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Rotationally invariant order parameter equations for natural patterns in nonequilibrium systems
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We discuss a theoretical description of the formation of cellular patterns exhibiting defects, grain bound-
aries, and spiral patterns in nonequilibrium large-aspect-ratio systems by means of rotationally invariant order
parameter equations. Starting from evolution equations of general form, we show that the order parameter
equations which can be derived close to a bifurcation point in general involve nonlinear terms which are
nonlocal. We present a suitable approximation scheme of these terms by local ones which is based on a
gradient expansion. A truncation of this expansion leads to model equations which are widely used in the
theoretical treatment of natural patterns in complex syst¢g1063-651X99)01003-X

PACS numbgs): 05.70.Fh, 05.45:a, 47.20-k, 47.11+]

. INTRODUCTION q(r,t)=&t)P(2)expikx)+c.c+0O(&2), (1.2

There are numerous examples of systems far from equwhere the order parameter obeys the Landau amplitude equa-
librium which exhibit an instability leading to the formation tion
of well-ordered patterngl—5]. In spatially extended systems .
various planforms are observed like roll structures, square &) =e&(t)—al &(H)[?&(1). (1.3

patterns, and hexagonal patterns. Well-known examples in- . .
clude hydrodynamic systems, like Rayleighred convec- Hexagonal structures are defined on a hexagonal lattice, and

tion with its various modification§6—8], the Faraday insta- involve three complex order parameters, etc. More compli-
bility [9], chemical instabilities leading to Turing structures cated situations are investigated using group theoretic meth-

[10-12, and pattern formation in the transverse field of la-0ds[15,16. ] o )
sers[13]. A second kind of reduced description deals with almost

All above mentioned systems share the common propertperfect patterns. Slow spatial variations of the order param-
that they have, for a certain range of control parameters, &ters are taken into account. For the case of roll structures the

stable stationary state which is, for large-aspect-ratio sysstate vector takes the form

tems, independent of the horizontal coordinategx,y). As _ . 2

one or several control parameters are changed this state un- a(r,t)=&(xP(Z)explikex) +¢.c+0(£%), (1.4
dergoes an instability, leading to the formation of cellular;ng the order parameter obeys a partial differential equation

patterns. _ , of the form of a Ginzburg-Landau equatiph7—19:
The theoretical treatment of these pattern forming systems

starts with an investigation of the basic equations describing i 2
the various systems under considerations. These equations&(x,t) = a+(ax+ —05)
are the well-known hydrodynamic equations, laser equations, V2

or reaction-diffusion equations. They take the general form 1.9

E(x,t)—al&(x,1)[2E(x,1).

. Extensions to square and hexagonal patterns are obvious
q(r,t)=N(a(r,1),v,0), (1.1 [20,21. The equations for slowly varying amplitudes are
) ) ) able to describe spatially slow variations of cellular struc-
whereN is a nonlinear function of the state vectr,t) 8 ¢reg, including defects of the regular latti@?]. However,
well as its spatial derivatives. Furthermore it depends on gne following physical effects are missed. First, the envelope
set of control parameters. Since similar patterns are ob- ¢4y ations lack a rotational symmetry, and are therefore not
served in quite different systems, a unified mathematical despe 1o cover, for instance, target patterns or spiral patterns.

scription should be possible. As is now well establishedsgcong, the amplitude equations are invariant with respect to
[14,3] such a reduced description becomes possible close T;Shase shifts of the form

instability. The state vectors depend on order parameters for
which a closed system of evolution equations can be ob- g(x,t)_,eiag(x,t), (1.6
tained.

Three different kinds of reduced descriptions have bee\s can be seen from E@l.4), such a phase shift belongs to
studied in the past, each focusing on certain aspects of the mere translation of the envelope structure describeg, by
pattern forming system. The first approach is devoted to per-e., of defects or grain bondaries of a roll pattern. No inter-
fect patterns which are defined on a spatially periodic latticeaction between the defect and the underlying roll structure
The order parameters are amplitudes of modes with a fixedccurs. Therefore, the phenomenon of pinning of defects to
spatial periodicity. Let us consider the simplest case of dahe underlying roll structure is not included. Pinning is a
perfect roll structure. Here the state vector is described as nonperturbative effect which is missing in the reduced de-
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scription using envelope equatioh3]. Third, if we con-
sider stationary solutions of the one-dimensional Ginzburg- A
Landau equation, one may show that there are only spatially
periodic or quasiperiodic solutions. However, there are gen- e k
eral arguments which indicate that there also exist spatially ' =
chaotic stationary solutions of the basic equatid2d]. k.

These chaotic solutions are missed in the description of the Ay
pattern forming process using spatially slowly varying am-
plitudes.

The third kind of reduced description is based on an order
parameter which obeys a rotationally invariant evolution NZ
equation containing the spatially fast modulations of the \7”\
emerging cellular structuregl4,25. The order parameter

field can be directly connected with the structures seen in the . . .
two-dimensional plane. Such an equation can be obtained FIG. 1. The systems under consideration possess eigenvalues

from the basic equations, provided the behavior in the vertithat aré grouped in severélisually infinitely many bands. The
' bove band may cross ttkeaxis for certain values of the control

cal (2) direction is enslaved by the spatiotemporal structure$ . L .
in the horizontal plane. It is evident that the above mentioned2rameter, and mark the onset of an instability with a typical wave

reduced descriptions can be derived further from this ordenumberkc' Modes that belong to this band are called order param-
P . E\ters. All other bands stay below tkexis for all parameter values.
parameter equation.

. L . . . They belong to linearly damped modes which can be eliminated.
Since the order parameter equation is rotationally invari-

ant and inco_rporates fast spatial variat_io_ns, it contains_ COMrhys we restrict our attention to systems with a quadratic
plicated nonlinear terms which are decisive for a descr'pt'_omonlinearity. The state vectay(r,t) describes the deviation

of the selection of the various planforms as well as the iny. . o \asic state. which is time independent and homoge-
stabilities of the perfect cellular patterns. Therefore, theneous in the horizc,)ntal directions, §)

guestion arises of whether these terms may be further sim- The stability of the basic state=0 is investigated by a

plified. As is well known, a substitution of these terms by ormal mode analysis, neglecting the nonlinearities. Due to

. . . n
simpler ones leads to model equations like the so-calle : : ;
Swift-Hohenberg equation25], which may account for ?}'qa:)r:js;z;tlt(;rilzltﬁér?(;rl}iwi/n;nf(t)?%xio(r;z c;lr;}gl plane the normal

some aspects of pattern formation but may fail in reproduc-
ing, for instance, the correct stability boundaries for rolls. @ (x,2)=D;(k,z)e" . 2.2
Usually, the stability boundaries of the roll solutions with I )

respect to large wavelength modulations of the zigzag instarhe corresponding eigenvalue problem reads
bility, as well as the cross roll instability, depend decisively

on the structure of the nonlinear interaction terms. Therefore, \(K)@j(k,2)e* *=L(V,0)®;(k,2)e** (2.3
a mere substitution of these terms, e.g., by a simple cubic
term, is not justified. The discrete index specifies the mode structure in vertical

The present paper is devoted to a discussion of the integlirection(see Fig. 1. The continuous wave vectérdefines
action terms which are in general nonlocal, and their apthe orientation as well as wavelength of the plane waves.
proximation by terms involving the order parameter field as In order to deal with the nonlinear properties the state
well as their spatial derivatives. The paper is outlined ag/ector q(r,t) is expanded into a complete set of normal
follows. In Sec. Il we summarize the derivation of the ordermodes:
parameter equation. Then we consider a representation of the
nonlinegr terms invoking symmetry_arguments leading to the q(r,t):E fdk £ (k1) D (K,2)e'*, (2.4)
expansion of the nonlocal interaction terms by local ones. ] ! !

We consider the case of an instability involving one order

parameter for systems both with and without reflectionallnserting this expansion into the evolution equation, one can
symmetry. Furthermore, the case of an instability involvingderive a set of differential equations for the mode amplitudes
order parameters of pseudoscalar type is considered. In tHg(k,t):

appendix we consider the long wavelength instabilities as

well as the amplitude instability for roll solutions of the or- &(k,t)=N;(k)§j(k,t)

der parameter equation for systems with reflectional symme-

try. We discuss how the corresponding stability boundaries +> d2k’f d2k” s(k—k' — k")
are affected by the truncation of the expansion of the nonlin- iy

ear terms.

XFj;j/’j//(k;k,,k”)gj/(k,,t)fjn(k”,t). (25)

Il. ORDER PARAMETER EQUATIONS Here the matrix element¥;.;, ;«(k;k’, k") are introduced

. : : according to:
We shall investigate evolution laws of the form 9

. Tjjr (KiK' K = (D] (X,2)|[T: @1 100 (X,2): Dy (X, 2) ).
q(r,t)=L(V,o)q(r,t)+I:q(r,t):q(r,t). (2.1 (2.6
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The brackets denote a suitably defined scalar product, anegtes, at least in a region around a certain critical wave vector
®" is the solution of the adjoint probleif2.3. Due to Eq. k.. The bands formed of modes with negative growth rates
(2.3), the linear part of Eq(2.5) is diagonal. The eigenvalues are denoted as stable bands.

\;(k) are continuous functions of the wave vectar For We denote the mode amplitudes of the critical and the
rotationally invariant systems they only depend on the modustable bands withf,(k,t), andé&(k,t) respectively. The am-
lus|k|. There arg =1, . .. = different bands of mode§ig.  plitudes &,(k,t) define the order parameters. Since the
1). If the basic state is stable, all bands have negative growtrowth rates of the stable modes all are negative, we can
rates RENj(k)]<0. An instability arises if ondor severgl  integrate the evolution equation for the modes of the stable
bands have modes with vanishing or even positive growtlbands to obtain

§s(k.t)=ft

drers®it=n > j dzk’f d%k” S(k—k' =K\ gy wr(k;K' K" Eur (K, 7) En(K", 7). (2.7
— 0 u uH
Here only terms quadratic in the order parametg(k,t) are retained. Higher order terms can be determined iteratively.

An adiabatic elimination of the modé§,14] of the stable bands leads to a closed set of evolution equations for the order
parameters. In lowest order one obtains

dzk'szk”ﬁ(k—k’—k”) Cowwr WD g 2.9
(k') + oK)= Ag(k) T '

&k, )=,

Here w (k) denotes the imaginary part of the eigenvalygk).

Inserting the resulting expression for the stable modes into the equations for the unstable modes yields the following order
parameter equations. Here we have only retained terms up to cubic orders:

&k D=N &k D+ X | dK f A2k Sk =k’ =K )Ty o (KiK' K €y (K D £ (K1)

+ 2 dzk’f dzk"J dzk”'é(k—k’—k”—k”’)l“ﬁ;u,,u,,,um(k;k’,k”,k”’)fu,(k’,t)guu(k”,t)gu,,,(k”’,t).
u’,u”u
(2.9
The mode coupling coefficieniﬁi;u,’u,,'u,,,(k;k’,k”,k”’) take the form
1“3’:11,’u,,’u,,,(k;k’,k”,k’”)=ES fdksé(ks—k’—k”)(Fu;u,YS(k;k’,ks)+I‘u;Svu,(k;kS,k'))
FS,U”,U’"(kS;k”’km) (21@

" (@n(K) + wgr(K")—Aa(ke)

It is convenient to transform the order parameter equation fkospace into real space. We define order parameter fields
V¥, (x,t) by the Fourier transforms of the amplitudggk,t):

\Iru(x,t):f dk &,(k,t)e'kx (2.11

These fields then obey the equation

P (X, =Ny (=i V)P (X, 1)+ >, d2x'd2x”l’3;u (X=X X=X")W (X", )W (X",1)
u,u

T
,u

! " n 3 ! " " ! " "
+ ,Z ; d2x’ d2x"d2x L lour g g (X= X X=X X= X)W (X O W (X7 D) W (X7 1) (2.12
u,u,u
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The kernelsl“ﬁ;u,’u,,(x—x’,x—x”) are obtained from the (9) (b)
Fourier transforms of the mode coupling coefficients
Fﬁ;u,‘u,,(k;k’,k”), etc. It is evident how higher order terms K. ks
have to be included.
We may summarize the preceding results as follows. The K

instability of a stationary spatially homogeneous state of a

large-aspect-ratio system can be described by the order pa- FIG. 2. Wave vector selection in Fourier space for quadiaic

rameter fields¥ ,(x,t) which define the state vector accord- and cubic(b) nonlinear terms(a) An arbitrary triangle is fixed by

ing to: its three sides, leading to expressions in real space that include three
Laplace operators like E43.28. (b) An arbitrary square needs for

. a unique description its four sides and one diagonal, for instance
q(r,t)=2 Dy (—iV,2)¥y(x,t) ks=k,+ks. This leads to cubic expressions including five Lapla-
! cians like Eq.(3.25.

+D D(—iV, )PV (x,t)], (2.13

dwy

2
|,

’}/x
a,

The amplitudes of the stable modes are functions of the order

parameter fields. These fields obey evolution equations of the o ] ] ]
form An approximation of the nonlinear mode coupling coeffi-

cients turns out to be more involved. An important step con-
V(D) =Ny (—iV)W (X, ) +H [P, (xt)], (2.14  Sists of investigating the dependence of the mode coupling
coefficientsI'?> andI'3 in k space on the various vectors.
whereH [V ,(x,t)] is a nonlinear nonlocal function. For the This dependence is to some extent determined by the under-
case of supercritical instabilities an approximation includinglying symmetries of the system.

c’C

cubic terms as in Eq2.12) is usually sufficient. For the sake of simplicity, from now on we assume the
case of one order parameter figlgk,t) or ¥(x,t); we there-
1. APPROXIMATION OF THE MODE COUPLING fore may drop the indices and denotek’ by kl’ etc. The
COEEFICIENTS extension to more order parameter fields is evident.

Translational symmetry is responsible for the selection
It is desirable to obtain suitable approximations for therules of thek vectors:

linear operatorsAy(—iV) as well as for the kernels

T2, w(x=X x=X"), etc., of the nonlinear terms. Let us k=ky+k, for T?
start with the linear terms. Due to rotational symmetry in the . (3.4
horizontal plane, the eigenvalues in E8.3) only depend on k=kitkytks for I

k2. If there is one band of unstable modes with real eigen- _ N . )
values, A (k?) can be expanded ak, with respect to Rotational symmetry implies that the mode coupling coeffi-
kz_sz ! ¢ cients depend only on the absolute values of the wave vec-

¢ tors, the scalar products, and the vertical components of the
1 2\ cross products between the various wave vectors involved in
u

L 2_ 1 2)2 the mode coupling:
0'cs+2 D)2 (k°=kg)*. (3. pling

N,
A(KP) = —

) 9o keoe k.o 2

cre ki, Ki-kj, e [kixXkj], (3.5

Furthermore, we have introduced a reduced control param-. . . . L
- . o with e, the unit vector in vertical direction. For systems
etere = o/o.—1 which measures the deviation from thresh-

old which are invariant under reflections with respect to arbitrary

Transforming expressiof8.1) to real space leads, after an planes perpendicular to the fluid layer, the dependence on the

: . : : cross products drops out.
appropriate scaling of time and space, to the linear operatof These symmetry considerations allow us to find suitable

of the Swift-Hohenberg equatid2S]: representations of the mode coupling coefficients. Let us first
e—(1+A)2. (3.2 have a look at the quadratic mode coupling tdffh This
term depends on
Here and for the followingA denotes the Laplacian with 2 22 L2 L2
respect to the horizontal coordinates The extension to a Pe=T7(k,k1,k3,€, [k Xka]), (3.6
pair of complex eigenvalues crossing the real axis demands

for a complex order parameter field and includes a dispersiof‘iInCe the scalar products_as well as aI.I other cross products
¥ [26]: can be expressed according[fag. 2a)]):

_1 2 L2 L2
e+imy(ko) =i y(1+A)— (1+A)2, 33 Ki-kp=z (ki tka)"—Ki=k3),
with k-ky=ki+ky ks, 37
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k-ky=k3+kq-ky, A(k,kq,ky+kz)B(ks+ ks, ks, k3), (3.8
e, [kxki]=e,[koxky], where each factor separatively is invariant with respect to
translations and rotations. Applying the same reasoning as
e, [kxk,]=¢€,[kyxk,]. above we see that the coefficiehtdepends on
Now let us turn to mode coupling terms of third order. For k%, ki (katkg)? e (kiX[katks]), (3.9

the following we shall assume that they arise solely due to

elimination of stable modes, i.e., the nonlinearity of the sys—Whereas the coefficier has the arguments

tem under consideration is quadratic. Then the mode cou- k2, Kk (kot+ks)2 e-(koxks). (3.10
pling term is composed of a sum of products of the form
[Fig. 2(b)] As a result the cubic mode coupling term takes the forms
|
I3=T3(k? kZ,k5,k3,(Ko+k3)?,6,X (kg X[ Kot Ks]), €, (Ko X K3)). (3.1

Up to now we have specified the dependences of the moddere the mode coupling coefficiebtas well as the angle
coupling coefficientd"? andI'® on thek vectors, taking into O, between two wave vectols, andk,, have been intro-
account the invariance of the system under translations, raduced[fig. 2(b)]. It is related to the coefficienf® in the
tations, and reflections. This will allow us to perform ap- following way:

proximations for the nonlinear mode coupling coefficients. 30202 12 22
B(Opmp) =—T7(k ;kc 'kc 'kc'2kc[coi®mn) —1]).

A. Isotropic and reflectionally invariant systems 319

Let us first consider a system which has, in addition toWe shall assume that the Taylor expansionb¢®,,) in
translational and rotational invariance, reflectional symmec0s@n,)—1 converges. This assumption allows us to perform
try. Let us further assume that there are no quadratic nonlind formal Taylor expansion of the nonlinear mode coupling
earities. In that case the mode coupling term of third ordecoefficientI"with respect to the variablekg+kz)? at the

takes the form origin (k,+k3)?=0. Furthermore, we take into account that
. the dominant contributions to the evolving pattern stem from
I3=T3(k?ki,k5,k3,(ka+k3)?). (8.12  plane waves with absolute values of tkevectors close to

the critical one. Therefore, we may release the assumption
|ki| =k, and expand’® with respect tck? atkZ. Our formal
result reads

First we restrict the patterns to be formedMplane waves
having wave vectors with exactly the critical vallag,

An(t)=€&ky,t),  |kol=ke, n=1,...N. (3.13 . '
oo = 3 Bpijm(~ 1 (K- k(¢ —k3)]

The following system of Landau type amplitude equations n;ijim
are derived from the evolution equati¢2.9):

X (kg—k3)'(kE—k3)M(ko+kg)?". (3.16
N
A (D) =N (KDA(1)— b(® - VA (1)2A(1). Now we may transform to real space according to Eq.
n(D=M(ke)An () mZ:l (Orm) [ Am()[*An(D) (2.11). The order parameter equation for the fielt{x,t)
(3.19 then reads, with the linear part given (8.2),
|
V(x)=[e=R2W(x,)+ X BryjmA{APHATA W HE™ (x,1)]}, (3.17
n;ijlm

with the abbreviation
A=1+A. (3.18

Note that the spatial coordinates are scaled so that the critical wave length i®2k.= 1. A truncation of the formal Taylor
expansion leads to an evolution equation with local nonlinear interaction terms, i.e., terms involving only tNg(figldas
well as its spatial derivatives. The simplest approximation using only the Bgrgg, leads to the Swift-Hohenberg equation
[25]. In the appendix we shall consider roll solutions of E}17), and discuss their stability with respect to long wavelength
disturbances as well as with respect to amplitude instabilities.

It is interesting to notice that the order parameter equation turns into a gradient system if the coeBigjgntare totally
symmetric with respect to the indicég,l, andm. In that case the following Ljapunov potential exists:
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V4[‘I’]=—%f dX[(s—Z)‘I’(X,t)]Z—%n%m Bn;ijlmj X[ AW (x, ) JTATW (x,1) JAM{[A"W (x,1) LA™ (x,1) ]},

(3.19

from which the evolution equatiof8.17) is obtained by the exists.
functional derivative

. SV ¥ B. Isotropic systems lacking reflectional symmetry
P=— 5\[1, ] . (3.20

Now we release the assumption of reflectional symmetry.

: . . _As an example we mention the convective instability in
Furthermore, if one is content with the lowest order appProXigrge-aspect-ratio systems rotating around a vertical axis

mation £®?, neglecting contributions of terms of the order [27-29. This externally applied rotation conserves rota-
of tional invariance but breaks reflection symmetry.
Xip i ) Again we perform a Taylor expansion with respect to the
(x.t), >0 32D variables k2 at k2 and (,+ks)? es-[koxks], and
to the cubic part, the term,.qo00are totally symmetric and €' [K1>X (k2 +ks)] at zero. We introduce the abbreviation
a Ljapunov potential having the form
B ai=kK—kZ. (3.23
VA P]= —%f dx[(e—A)¥(x,1)]?

Furthermore, we note that even powers of terms involving

—%Z Br.0000| dX W2(x, 1) A"P2(x,t) the cross products are invariants with respect to reflections,

. and can therefore be expressed in terms of powers of
(3.22 k3, k3, and k;+k,)2. Therefore, the expansion reads

r3= > Bn;mm<—1>“aia£a'2ag“<k2+k3>2“+n§m Criijim(—1)"a' e aba§ (ko +k3)2"e, (ko kg)

n;ijim

+ 2 Duijm(~1)"a ajazafiko ko) ™e,: (KuxX [kotks). (324

Transforming back to real space yields the desired order parameter equation

W (x,t)=[e—AZ]W(x,t)+ ZI BriijimA {AIW (x, ) ATAW (x, 1) A™P (x,1) ]}

;ijlm

+ 2 CrijmA{AW(x,t) A", [ VAW (x,t) X VA™F (x,1)]}

n;ijlm

+ 2 DpijimAl{e, [VAIW(x,t) X VA" AW (x,H) A™ (x,1) 1} (3.25

n;ijlm

We mention that equations of the present type have been

applied to describe pattern formation in rotatingnBed con- I2(k,kq,kp) = 2 Cijjal o ay. (3.26
vection where complex spatio-temporal patterns arise due to :
the Kuppers-Lortz instability 30—32. For systems lacking reflectional symmetry, we have to take
into account a term proportional to the cross product
C. Quadratic terms & [kaXks]:

Now we wish to include also quadratic terms into the oo
evolution equatior(2.9). Let us again first consider the case Fz(k*kl’kZ):ijzl Diilalajlalzez'[kl><k2]- (327
of a reflectionally invariant system. Then the dependence on
the cross produd, - [ k, X k3] drops out, and we can perform Transforming back to real space yields the two quadratic
an expansion ik? at k2. terms
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i - that large scale vortical motions are only weakly damped. A

HZI Cij ATAW (x, ) AW (x,1)], secondary spatially slowly varying field arises which has to
(3.28 be considered as a further order parameter. This situation has

. . _ ' been modeled by introducing the stream function of the vor-

> DyjAle, [VAIW(x,H)x VAP (x,1)]. tical velocity field as a second order parameter field. How-
I ever, the stream function is pseudoscalar. Therefore, we shall

It has been demonstrated that the inclusion of quadrati€iScuss a pattern forming system for which an order param-
terms leads to the formation of hexagonal patterns close tgter of pseudoscalar type has to be taken into account. This

onset of the instability33,34]. observation will lead us to generalizations of the above form
of the model of Mannevill¢36,37).
D. Order parameters of pseudoscalar type In addition to an order parameter field arising due to an

instability at a finite wave vectdt., we consider a second-

Itis v_veII established that the convective instability in sys-ary order parameter fiel® (x,t) which is pseudoscalar. Fur-
tems with low Prandtl numbers is not governed only by amthermore we assume that the two fields are coupled by qua-
order parameter which belongs to the convective roll struca fic t ' For thi th t of ord P y qt
ture. As first noticed by Siggia and Zippeli{35], there are ratic terms. ror this case, the set of order parameter

effects of large scale horizontal drift motions due to the facfquations reads

W (x,t) =AW (x,t)+ §__|‘, Bn;ij|mZi{Zj\If(x,t)A“[Z'\If(x,t)zm‘lf(x,t)]}+_z:, CijAley [VAIW (x,t) X VA'D(x,1)],
n;ijlm 1]
(3.29

(A)D(x,t) = y(A)D(x,t)+ ZI Di;j,zieg-[vzixlr(x,t)xvﬁ'qf(x,t)]. (3.30
n;ijim

Here y(—k?)/ 7(—k?) denotes the linear growth rates of the ~ APPENDIX: STABILITY BOUNDARIES OF ROLLS
normal modes of the pseudoscalar fidi¢ix,t). We mention

that quadratic terms involving the fields and¥ as well as .
e ) for the order parameter equati¢®.17). In the lowest order
® and® could also arise in the equation fdr. The struc- of g, a solution of Eq(3.17 having the form of parallel rolls

ture of the corresponding coupling coefficients can be ob-
. S 4 reads
tained by similar reasonings, so that we do not need to

specify them here.

Here we want to investigate the stability of roll solutions

The class of systems described by the present types of Wo(X)=Ao(k)sin(kx), (A1)
order parameter equations have become highly important by
the observation that they are able to describe the so-calledlith
spiral turbulencg38], which has been investigated experi-
mentally[39], and recently in direct numerical simulations of e—a?
the three dimensional hydrodynamic equatiff@]. Ad(k)= _4co(k) , (A2)

IV. CONCLUSION S o
. ] ~ wherea is given in Eq.(3.23, and the abbreviation
In the present paper we have given a detailed derivation

of order parameter equations describing the evolution of pat-

terns in nonequilibrium systems. Starting from a general set Co(k):_z Bn;i”mai+J+|+m[(_4k2)”+ 256,0] (A3)
of equations of motion, we argued that the reduction of the ijlmn

many degrees of freedom to a few “relevant” ones, namely,

the order parameters, close to an instability leads to a nonlawith the Kronecker symbob;; is used.

cal order parameter equation in form of an integrodifferential

equation. We have shown that the nonlocal terms may be
approximated by a suitable local gradient expansion. This
expansion takes into account that close to threshold the order To obtain the phase instability boundaries that confine the
parameter field is excited only in a finite band around a typi+egions in thek-¢ plane, where Eq(Al) is stable with re-

cal critical wave number. This allows us to perform a sys-spect to disturbances with long wavelength we invoke the
tematic expansion of the nonlocal terms in powers of themethod of phase equatiof4l,4]. We insert

bandwidth. A secondary expansion takes into account the

tr;cc))rr:gnear interaction between plane waves of different direc- W(x, ):(Ao;k) +a(x,t))ei(kx+®(x,t))’ (Ad)

1. Phase instabilities
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with the spatially slowly varying amplituda(x,t) and phase f(a,d®)=0 (AB)
d(x,t) into Eq. (3.17). After linearization and neglecting

higher spatial derivatives we obtain equations of the forms , ) ) ,
for a, which yields the instantaneous relatiar=a(d,P).

a=f(a,a,d), Inserting this into the equation of motion for the ph#4&)
X (A5) leads to the phase equation

D =g(05®P,dyyP,a,0,8),

where f and g are linear functions ofb and a and their PXO=[Dydct DLyl PXD). (A7)
derivatives. The assumption that the amplitude is enslaved
by the phase allows an adiabatic elimination of the first byThe phase diffusion coefficients can be computed explicitly

solving from Eq.(3.17). They read

ci(k) 2«

Co(k)  g—a?

E Bn_ijlmai+j+l+m—2

+6k?—2—
) Co(K) ifimn

X %(—4k2)”+1(i(i—1)—j(j—1)+|(|—1)+m(m—1)+2i(j+I+m))—a(—4k2)”(j—I—m—i—2n(2i+|+m))

+2a?(— 4Kk IN2N—1)—4K25,(i (i—1)+j(j— 1)+ 2i(j+1+m))+2ab,(i +]) |[e — a®]— 2akH [ 28,0(3i +])

+(—4k®)"(Bi—j+I+m)+4na(—4k>" 1] %(s—az)—Za ] (A8)
0
and
8—a2 A
DL=—2a—C(—k)._IE Brijime! 1M 4k (i — 1+ m) + 2na(—4k?)" 1+ 28,0(i + )], (A9)
0 ijlmn
with
eu(k) = dCo(k).

dk?
Rolls are unstable if at least one diffusion coefficient becomes negative. Therefore,

D=0 (A10)
denotes the longitudinal dickhausinstability [42,43, and

D,=0 (Al11)

the vertical or zigzag instability43].
Assuming again that the width of the excited band of the order parameter in Fourier space depends.pn

axs!®?, (A12)

simplifies expressionéA11) and (A10). If we solve fore we obtain up to the appropriate order the stability boundaries

2 a

2ab; 2a
a’+0(ad), 8l=—2—a+< o

b2 b

1+ a’+0(ad), (A13)

&=

b

3k?—1
(A13)
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where we used the abbreviations

a= >, B.oood(—4k%)"+26,0), (A14)

alz%n Briijim i+ + 1+ ma((— 4k®)"+28,0),

bEmEmn Briijiml (—4K?)"(i —j+1+m)+ 28001 + )18+ j+14ma1,

blEmEmn Bn;ij|m[(_4k2)n(i —JHI+m)+25,0(i +j)][5i+j+|+m,2+2n(_4k2)n_15i+j+I+m,]J-

From Eg.(Al13) it is obvious that in lowest self consistent The conditiono=0 yields the stability boundaries with re-
order the longitudinal instability boundary cannot depend orspect to the amplitude instability. To obtain the most danger-
the nonlinear coefficients of the gradient expansi®i?).  ous mode, the length and direction lof must be chosen so
The Eckhaus instability near threshold is universal and indethat o has a maximum. The terms in the sum owen Eq.
pendent from the special form of the kerréf. A quite  (A18) with n=0 and 1 have no angular dependence and
different situation occurs for the zigzag instability. Here all\yayes with arbitrary directions become unstable simulta-
coefficients with respect to the indexas well as the two  peqygly. This is also the case for the Swift-Hohenberg equa-
lowest order fulfilling the condition+j+1+m<2 are im- 4, (n=0). The term fom=2 is the first one that leads to
portant, and may influence the shape of the boundary. an angular dependent growth rai@16) and must be in-
) _ o cluded to adjust the stability boundary. It is easily shown that
2. Amplitude instabilities this expression can produce a maximal growth rate at an
In contrast to the long wavelength phase instabilities, theangle of 90° betweek andk;, leading to an instability that
amplitude instabilities usually have a wave vector compasets in perpendicularly t,, which is nothing else than the
rable or close to the critical one, but a different direction.well-known cross-rol(CR) instability [43].

Again we examine the stability of parallel roll&q. (A1)], Again we may expand- in powers ofe [or, according to
now making the ansatz Eq. (A12), of a?]. Up to orders we obtain
— ik{x+at T 7 7 7 3
W(x,1)=Wo(x)+aeikxtot), (A15) R A S s
—‘ 1553355555775 ]
. . . . . . . Y AAAAA VAAAAAAAAAA
with arbitrary orientated, for Eq.(3.17). Linearization with 900l 7% %g 55557
respect tca gives the growth rate . 1557575577757
I N AA A AR A AR AL
N A A A AR
850 \ 7555455555555
1 h 50555
c(k,k") 800 T055555447
— 2 2 ' 55455555755 -
o=g—a;—(e—a)—7, (A16) 59475457573 ]
Co(k) g 550 ]
750 75555557 =
- ’ 5 ]
with [ 222227 ]
- 17557
2 | e - l R
a;=1-k3, k=(k,0 (A17) 25 30
and

FIG. 3. Stability range of convection rolls in the Rayleigh-
Benard problem calculated from E¢8.17). The coefficients of Eq.
(3.17 were computed for the case of free vertical boundary condi-
tions and infinite Prandtl number. The Rayleigh number is denoted
by R. Convection sets in above the bold line. Rolls with a wave
vectork are stable in the shaded area and are bounded from the left
hand side by the zigzag instabilitgolid), and from the right hand
i+ 1+m side by the cross-roll instabilitydashed The bold dashed line
+268p0a; 'a M (A18)  denotesk,, which varies slightly withR.

c(kk)= > Byijm{(at ol M+ Mo )
ijlmn

X([= (k+k)2"+[ = (k=k")Z")
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ocr=e—a'?—2(g—a?) account. For the case of free boundaries in vertical direction
the linear problem2.3) may be solved analytically. The co-
efficientsB,.jji, of Eg. (3.17 are obtained from Eq3.12),

_ 7\21n _ R AAYAL
En: Brioood[ — (k+ k)] [ = (k=k')"]"+ Spo) which takes the following form:

X
Ean;OOO((( - 4k2)n+ 25n0)

R
256\ ) (k2) 2 ( w2+ k5)?

(A19)

T3(k? KT k3, K3, ka) = —
The boundary of the cross-roll instability is influenced only

by the coefficients belonging to the expansion with respect to I2— K2 3K2 K2 K2
A" in Eq. (3.17). s 1y 3 72
In summary we see that if the expansion with respect to (m?+Kk3)?2 (4w +kd)?
the indexn converges rapidly, model equations obtained by
low order truncations of the nonlinear interaction terms are X[3k5+K5—Kz], (A20)

reasonable approximations in the sense that they yield con-

verging expressions for the stability boundaries of the roll ) i _ i
solutions. with ke=k,+k3 and \(?) being the eigenvalue of the first

stable mode having thedependence sing).

Figure 3 shows the results. Note that compared to the
diagrams found from the Swift-Hohenberg equatigb] the

As an example we computed the phase and amplitudgigzag instability is inclined to the left, and cross-roll and
instabilities of parallel rolls as the first instability in Eckhaus instabilities are changed. Rolls are bounded for
Rayleigh-Beard convection from Eq(3.17). First order |arge wave vectors by the cross-roll instability. The diagram
terms with respect to the bandwidth as well as second is in excellent agreement with that computed directly from
order terms of the angular couplidg' have been taken into the hydrodynamic equatiorig4].
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