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Rotationally invariant order parameter equations for natural patterns in nonequilibrium systems

M. Bestehorn and R. Friedrich
Institut für Theoretische Physik und Synergetik, Universita¨t Stuttgart, Pfaffenwaldring 57/4, 70550 Stuttgart, Germany

~Received 30 September 1998!

We discuss a theoretical description of the formation of cellular patterns exhibiting defects, grain bound-
aries, and spiral patterns in nonequilibrium large-aspect-ratio systems by means of rotationally invariant order
parameter equations. Starting from evolution equations of general form, we show that the order parameter
equations which can be derived close to a bifurcation point in general involve nonlinear terms which are
nonlocal. We present a suitable approximation scheme of these terms by local ones which is based on a
gradient expansion. A truncation of this expansion leads to model equations which are widely used in the
theoretical treatment of natural patterns in complex systems.@S1063-651X~99!01003-X#

PACS number~s!: 05.70.Fh, 05.45.2a, 47.20.2k, 47.11.1j
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I. INTRODUCTION

There are numerous examples of systems far from e
librium which exhibit an instability leading to the formatio
of well-ordered patterns@1–5#. In spatially extended system
various planforms are observed like roll structures, squ
patterns, and hexagonal patterns. Well-known examples
clude hydrodynamic systems, like Rayleigh-Be´nard convec-
tion with its various modifications@6–8#, the Faraday insta
bility @9#, chemical instabilities leading to Turing structur
@10–12#, and pattern formation in the transverse field of
sers@13#.

All above mentioned systems share the common prop
that they have, for a certain range of control parameter
stable stationary state which is, for large-aspect-ratio s
tems, independent of the horizontal coordinatesx5(x,y). As
one or several control parameters are changed this state
dergoes an instability, leading to the formation of cellu
patterns.

The theoretical treatment of these pattern forming syste
starts with an investigation of the basic equations describ
the various systems under considerations. These equa
are the well-known hydrodynamic equations, laser equatio
or reaction-diffusion equations. They take the general fo

q̇~r ,t !5N„q~r ,t !,“,s…, ~1.1!

whereN is a nonlinear function of the state vectorq(r ,t) as
well as its spatial derivatives. Furthermore it depends o
set of control parameterss. Since similar patterns are ob
served in quite different systems, a unified mathematical
scription should be possible. As is now well establish
@14,3# such a reduced description becomes possible clos
instability. The state vectors depend on order parameters
which a closed system of evolution equations can be
tained.

Three different kinds of reduced descriptions have b
studied in the past, each focusing on certain aspects of
pattern forming system. The first approach is devoted to p
fect patterns which are defined on a spatially periodic latt
The order parameters are amplitudes of modes with a fi
spatial periodicity. Let us consider the simplest case o
perfect roll structure. Here the state vector is described a
PRE 591063-651X/99/59~3!/2642~11!/$15.00
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q~r ,t !5j~ t !F~z!exp~ ikcx!1c.c.1O~j2!, ~1.2!

where the order parameter obeys the Landau amplitude e
tion

j̇~ t !5«j~ t !2auj~ t !u2j~ t !. ~1.3!

Hexagonal structures are defined on a hexagonal lattice,
involve three complex order parameters, etc. More com
cated situations are investigated using group theoretic m
ods @15,16#.

A second kind of reduced description deals with alm
perfect patterns. Slow spatial variations of the order para
eters are taken into account. For the case of roll structures
state vector takes the form

q~r ,t !5j~x,t !F~z!exp~ ikcx!1c.c.1O~j2!, ~1.4!

and the order parameter obeys a partial differential equa
of the form of a Ginzburg-Landau equation@17–19#:

j̇~x,t !5F«1S ]x1
i

A2
]y

2D 2Gj~x,t !2auj~x,t !u2j~x,t !.

~1.5!

Extensions to square and hexagonal patterns are obv
@20,21#. The equations for slowly varying amplitudes a
able to describe spatially slow variations of cellular stru
tures, including defects of the regular lattice@22#. However,
the following physical effects are missed. First, the envelo
equations lack a rotational symmetry, and are therefore
able to cover, for instance, target patterns or spiral patte
Second, the amplitude equations are invariant with respec
phase shifts of the form

j~x,t !→eiaj~x,t !. ~1.6!

As can be seen from Eq.~1.4!, such a phase shift belongs t
a mere translation of the envelope structure described bj,
i.e., of defects or grain bondaries of a roll pattern. No int
action between the defect and the underlying roll struct
occurs. Therefore, the phenomenon of pinning of defect
the underlying roll structure is not included. Pinning is
nonperturbative effect which is missing in the reduced
2642 ©1999 The American Physical Society



rg
ia
en
al

th
m

de
on
th
r
th

in
rt
re
e

d

ar
om
io
in

th
sim
by
lle

uc
lls
th
st
ly

or
b

te
ap
a
a
e
f
th
e
e

na
ng

t
a

r-
m
rie
lin

tic

ge-

to
al

al

.
ate
al

can
es

lues

l
ve
m-
.
d.

PRE 59 2643ROTATIONALLY INVARIANT ORDER PARAMETER . . .
scription using envelope equations@23#. Third, if we con-
sider stationary solutions of the one-dimensional Ginzbu
Landau equation, one may show that there are only spat
periodic or quasiperiodic solutions. However, there are g
eral arguments which indicate that there also exist spati
chaotic stationary solutions of the basic equations@24#.
These chaotic solutions are missed in the description of
pattern forming process using spatially slowly varying a
plitudes.

The third kind of reduced description is based on an or
parameter which obeys a rotationally invariant evoluti
equation containing the spatially fast modulations of
emerging cellular structures@14,25#. The order paramete
field can be directly connected with the structures seen in
two-dimensional plane. Such an equation can be obta
from the basic equations, provided the behavior in the ve
cal ~z! direction is enslaved by the spatiotemporal structu
in the horizontal plane. It is evident that the above mention
reduced descriptions can be derived further from this or
parameter equation.

Since the order parameter equation is rotationally inv
ant and incorporates fast spatial variations, it contains c
plicated nonlinear terms which are decisive for a descript
of the selection of the various planforms as well as the
stabilities of the perfect cellular patterns. Therefore,
question arises of whether these terms may be further
plified. As is well known, a substitution of these terms
simpler ones leads to model equations like the so-ca
Swift-Hohenberg equation@25#, which may account for
some aspects of pattern formation but may fail in reprod
ing, for instance, the correct stability boundaries for ro
Usually, the stability boundaries of the roll solutions wi
respect to large wavelength modulations of the zigzag in
bility, as well as the cross roll instability, depend decisive
on the structure of the nonlinear interaction terms. Theref
a mere substitution of these terms, e.g., by a simple cu
term, is not justified.

The present paper is devoted to a discussion of the in
action terms which are in general nonlocal, and their
proximation by terms involving the order parameter field
well as their spatial derivatives. The paper is outlined
follows. In Sec. II we summarize the derivation of the ord
parameter equation. Then we consider a representation o
nonlinear terms invoking symmetry arguments leading to
expansion of the nonlocal interaction terms by local on
We consider the case of an instability involving one ord
parameter for systems both with and without reflectio
symmetry. Furthermore, the case of an instability involvi
order parameters of pseudoscalar type is considered. In
appendix we consider the long wavelength instabilities
well as the amplitude instability for roll solutions of the o
der parameter equation for systems with reflectional sym
try. We discuss how the corresponding stability bounda
are affected by the truncation of the expansion of the non
ear terms.

II. ORDER PARAMETER EQUATIONS

We shall investigate evolution laws of the form

q̇~r ,t !5L~“,s!q~r ,t !1G:q~r ,t !:q~r ,t !. ~2.1!
-
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Thus we restrict our attention to systems with a quadra
nonlinearity. The state vectorq(r ,t) describes the deviation
from a basic state, which is time independent and homo
neous in the horizontal directions (x,y).

The stability of the basic stateq50 is investigated by a
normal mode analysis, neglecting the nonlinearities. Due
translational symmetry in the horizontal plane the norm
modes take the following form@x5(x,y)#:

Fj ,k~x,z!5Fj~k,z!eik•x. ~2.2!

The corresponding eigenvalue problem reads

l j~k!Fj~k,z!eik•x5L~“,s!Fj~k,z!eik•x. ~2.3!

The discrete indexj specifies the mode structure in vertic
direction~see Fig. 1!. The continuous wave vectork defines
the orientation as well as wavelength of the plane waves

In order to deal with the nonlinear properties the st
vector q(r ,t) is expanded into a complete set of norm
modes:

q~r ,t !5(
j
E dk j j~k,t !Fj~k,z!eik•x. ~2.4!

Inserting this expansion into the evolution equation, one
derive a set of differential equations for the mode amplitud
j j (k,t):

j̇ j~k,t !5l j~k!j j~k,t !

1 (
j 8, j 9

E d2k8E d2k9d~k2k82k9!

3G j ; j 8, j 9~k;k8,k9!j j 8~k8,t !j j 9~k9,t !. ~2.5!

Here the matrix elementsG j ; j 8, j 9(k;k8,k9) are introduced
according to:

G j ; j 8, j 9~k;k8,k9!5^Fj ,k
† ~x,z!uG:Fj 8,k8~x,z!:Fj 9,k9~x,z!&.

~2.6!

FIG. 1. The systems under consideration possess eigenva
that are grouped in several~usually infinitely many! bands. The
above band may cross thek axis for certain values of the contro
parameter, and mark the onset of an instability with a typical wa
numberkc . Modes that belong to this band are called order para
eters. All other bands stay below thek axis for all parameter values
They belong to linearly damped modes which can be eliminate
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The brackets denote a suitably defined scalar product,
F† is the solution of the adjoint problem~2.3!. Due to Eq.
~2.3!, the linear part of Eq.~2.5! is diagonal. The eigenvalue
l j (k) are continuous functions of the wave vectork. For
rotationally invariant systems they only depend on the mo
lus uku. There arej 51, . . . ,̀ different bands of modes~Fig.
1!. If the basic state is stable, all bands have negative gro
rates Re@l j (k)#,0. An instability arises if one~or several!
bands have modes with vanishing or even positive gro
nd

-

th

h

rates, at least in a region around a certain critical wave ve
kc . The bands formed of modes with negative growth ra
are denoted as stable bands.

We denote the mode amplitudes of the critical and
stable bands withju(k,t), andjs(k,t) respectively. The am-
plitudes ju(k,t) define the order parameters. Since t
growth rates of the stable modes all are negative, we
integrate the evolution equation for the modes of the sta
bands to obtain
.
order

ng order

elds
js~k,t !5E
2`

t

dt els~k!~ t2t! (
u8,u9

E d2k8E d2k9d~k2k82k9!Gs;u8,u9~k;k8,k9!ju8~k8,t!ju9~k9,t!. ~2.7!

Here only terms quadratic in the order parametersju(k,t) are retained. Higher order terms can be determined iteratively
An adiabatic elimination of the modes@1,14# of the stable bands leads to a closed set of evolution equations for the

parameters. In lowest order one obtains

js~k,t !5 (
u8,u9

E d2k8E d2k9d~k2k82k9!
Gs;u8,u9~k;k8,k9!

i „vu8~k8!1vu9~k9!…2ls~k!
ju8~k8,t !ju9~k9,t !. ~2.8!

Herevu(k) denotes the imaginary part of the eigenvaluelu(k).
Inserting the resulting expression for the stable modes into the equations for the unstable modes yields the followi

parameter equations. Here we have only retained terms up to cubic orders:

j̇u~k,t !5lu~k!ju~k,t !1 (
u8,u9

E d2k8E d2k9d~k2k82k9!Gu;u8,u9
2

~k;k8,k9!ju8~k8,t !ju9~k9,t !

1 (
u8,u9,u-

E d2k8E d2k9E d2k-d~k2k82k92k-!Gu;u8,u9,u-
3

~k;k8,k9,k-!ju8~k8,t !ju9~k9,t !ju-~k-,t !.

~2.9!

The mode coupling coefficientsGu;u8,u9,u-
3 (k;k8,k9,k-) take the form

Gu;u8,u9,u-
3

~k;k8,k9,k-!5(
s
E dksd~ks2k82k9!„Gu;u8,s~k;k8,ks!1Gu;s,u8~k;ks ,k8!…

3
Gs,u9,u-~ks ;k9,k-!

i „vu9~k9!1vu-~k-!…2ls~ks!
. ~2.10!

It is convenient to transform the order parameter equation fromk space into real space. We define order parameter fi
Cu(x,t) by the Fourier transforms of the amplitudesju(k,t):

Cu~x,t !5E dk ju~k,t !eik•x. ~2.11!

These fields then obey the equation

Ċu~x,t !5lu~2 i¹!Cu~x,t !1 (
u8,u9

E d2x8d2x9Gu;u8,u9
2

~x2x8,x2x9!Cu8~x8,t !Cu9~x9,t !

1 (
u8,u9,u-

E d2x8d2x9d2x-Gu;u8,u9,u-
3

~x2x8,x2x9,x2x-!Cu8~x8,t !Cu9~x9,t !Cu-~x-,t !. ~2.12!



ts
s

h
f

r p
d-

rd
f t

e
ing

he

s
h

en

am
h

n
at

n
sio

fi-
n-

ling

der-

he

ion

ffi-
ec-
the

d in

s
ary

the

ble
first

ucts

three
r
nce
la-

PRE 59 2645ROTATIONALLY INVARIANT ORDER PARAMETER . . .
The kernelsGu;u8,u9
2 (x2x8,x2x9) are obtained from the

Fourier transforms of the mode coupling coefficien
Gu;u8,u9

2 (k;k8,k9), etc. It is evident how higher order term
have to be included.

We may summarize the preceding results as follows. T
instability of a stationary spatially homogeneous state o
large-aspect-ratio system can be described by the orde
rameter fieldsCu(x,t) which define the state vector accor
ing to:

q~r ,t !5(
u

Fu~2 i¹,z!Cu~x,t !

1(
s

Fs~2 i¹,z!Cs@Cu~x,t !#, ~2.13!

The amplitudes of the stable modes are functions of the o
parameter fields. These fields obey evolution equations o
form

Ċu~x,t !5lu~2 i¹!Cu~x,t !1Hu@Cu~x,t !#, ~2.14!

whereHu@Cu(x,t)# is a nonlinear nonlocal function. For th
case of supercritical instabilities an approximation includ
cubic terms as in Eq.~2.12! is usually sufficient.

III. APPROXIMATION OF THE MODE COUPLING
COEFFICIENTS

It is desirable to obtain suitable approximations for t
linear operatorslu(2 i¹) as well as for the kernels
Gu;u8,u9

2 (x2x8,x2x9), etc., of the nonlinear terms. Let u
start with the linear terms. Due to rotational symmetry in t
horizontal plane, the eigenvalues in Eq.~2.3! only depend on
k2. If there is one band of unstable modes with real eig
values, lu(k2) can be expanded atkc with respect to
k22kc

2 :

lu~k2!5
]lu

]s U
kcsc

sc«1
1

2

]2lu

]~k2!2U
kcsc

~k22kc
2!2. ~3.1!

Furthermore, we have introduced a reduced control par
eter«5s/sc21 which measures the deviation from thres
old.

Transforming expression~3.1! to real space leads, after a
appropriate scaling of time and space, to the linear oper
of the Swift-Hohenberg equation@25#:

«2~11D!2. ~3.2!

Here and for the following,D denotes the Laplacian with
respect to the horizontal coordinatesx. The extension to a
pair of complex eigenvalues crossing the real axis dema
for a complex order parameter field and includes a disper
g @26#:

«1 ivu~kc!2 ig~11D!2~11D!2, ~3.3!

with
e
a
a-

er
he

e

-

-
-

or

ds
n

g}
]vu

]k2 U
kcsc

.

An approximation of the nonlinear mode coupling coef
cients turns out to be more involved. An important step co
sists of investigating the dependence of the mode coup
coefficientsG2 and G3 in k space on the variousk vectors.
This dependence is to some extent determined by the un
lying symmetries of the system.

For the sake of simplicity, from now on we assume t
case of one order parameter fieldj(k,t) or C(x,t); we there-
fore may drop the indicesu and denotek8 by k1 , etc. The
extension to more order parameter fields is evident.

Translational symmetry is responsible for the select
rules of thek vectors:

k5k11k2 for G2,
~3.4!

k5k11k21k3 for G3.

Rotational symmetry implies that the mode coupling coe
cients depend only on the absolute values of the wave v
tors, the scalar products, and the vertical components of
cross products between the various wave vectors involve
the mode coupling:

k i
2 , k i•k j , ez•@k i3k j #, ~3.5!

with ez the unit vector in vertical direction. For system
which are invariant under reflections with respect to arbitr
planes perpendicular to the fluid layer, the dependence on
cross products drops out.

These symmetry considerations allow us to find suita
representations of the mode coupling coefficients. Let us
have a look at the quadratic mode coupling termG2. This
term depends on

G25G2~k2,k1
2 ,k2

2 ,ez•@k13k2# !, ~3.6!

since the scalar products as well as all other cross prod
can be expressed according to@Fig. 2~a!#!:

k1•k25 1
2 „~k11k2!22k1

22k2
2
…,

k•k15k1
21k1•k2 , ~3.7!

FIG. 2. Wave vector selection in Fourier space for quadratic~a!
and cubic~b! nonlinear terms.~a! An arbitrary triangle is fixed by
its three sides, leading to expressions in real space that include
Laplace operators like Eq.~3.28!. ~b! An arbitrary square needs fo
a unique description its four sides and one diagonal, for insta
ks5k21k3 . This leads to cubic expressions including five Lap
cians like Eq.~3.25!.
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k•k25k2
21k1•k2 ,

ez•@k3k1#5ez•@k23k1#,

ez•@k3k2#5ez•@k13k2#.

Now let us turn to mode coupling terms of third order. F
the following we shall assume that they arise solely due
elimination of stable modes, i.e., the nonlinearity of the s
tem under consideration is quadratic. Then the mode c
pling term is composed of a sum of products of the fo
@Fig. 2~b!#
o

, r
p-
.

t
e
li

de

n

r
o
-
u-

A~k,k1 ,k21k3!B~k21k3 ,k2 ,k3!, ~3.8!

where each factor separatively is invariant with respect
translations and rotations. Applying the same reasoning
above we see that the coefficientA depends on

k2, k1
2, ~k21k3!2, ez•~k13@k21k3# !, ~3.9!

whereas the coefficientB has the arguments

k2, k3
2, ~k21k3!2, ez•~k23k3!. ~3.10!

As a result the cubic mode coupling term takes the form
G35G3
„k2,k1

2 ,k2
2 ,k3

2 ,~k21k3!2,ez3~k13@k21k3# !,ez•~k23k3!…. ~3.11!
rm
ng

at
om

tion

q.
Up to now we have specified the dependences of the m
coupling coefficientsG2 andG3 on thek vectors, taking into
account the invariance of the system under translations
tations, and reflections. This will allow us to perform a
proximations for the nonlinear mode coupling coefficients

A. Isotropic and reflectionally invariant systems

Let us first consider a system which has, in addition
translational and rotational invariance, reflectional symm
try. Let us further assume that there are no quadratic non
earities. In that case the mode coupling term of third or
takes the form

G35G3
„k2,k1

2 ,k2
2 ,k3

2 ,~k21k3!2
…. ~3.12!

First we restrict the patterns to be formed ofN plane waves
having wave vectors with exactly the critical valuekc ,

An~ t !5j~kn ,t !, uknu5kc , n51, . . . ,N. ~3.13!

The following system of Landau type amplitude equatio
are derived from the evolution equation~2.9!:

Ȧn~ t !5l~kc
2!An~ t !2 (

m51

N

b~Qmn!uAm~ t !u2An~ t !.

~3.14!
de

o-

o
-

n-
r

s

Here the mode coupling coefficientb as well as the angle
Qmn between two wave vectorskm andkn have been intro-
duced @fig. 2~b!#. It is related to the coefficientG3 in the
following way:

b~umn!52G3
„kc

2 ;kc
2 ,kc

2 ,kc
2,2kc

2@cos~Qmn!21#….
~3.15!

We shall assume that the Taylor expansion ofb(umn) in
cos(umn)21 converges. This assumption allows us to perfo
a formal Taylor expansion of the nonlinear mode coupli
coefficient G3with respect to the variable (k21k3)2 at the
origin (k21k3)250. Furthermore, we take into account th
the dominant contributions to the evolving pattern stem fr
plane waves with absolute values of thek vectors close to
the critical one. Therefore, we may release the assump
uk i u5kc and expandG3 with respect tok i

2 at kc
2 . Our formal

result reads

G35 (
n; i j lm

Bn; i j lm~21!n~kc
22k2! i~kc

22k1
2! j

3~kc
22k2

2! l~kc
22k3

2!m~k21k3!2n. ~3.16!

Now we may transform to real space according to E
~2.11!. The order parameter equation for the fieldC(x,t)
then reads, with the linear part given in~3.2!,
n
gth
Ċ~x,t !5@«2D̃2#C~x,t !1 (
n; i j lm

Bn; i j lmD̃ i$D̃ jC~x,t !Dn@D̃ lC~x,t !D̃mC~x,t !#%, ~3.17!

with the abbreviation

D̃511D. ~3.18!

Note that the spatial coordinates are scaled so that the critical wave length is 2p, i.e.,kc51. A truncation of the formal Taylor
expansion leads to an evolution equation with local nonlinear interaction terms, i.e., terms involving only the fieldC(x,t) as
well as its spatial derivatives. The simplest approximation using only the termB0;000 leads to the Swift-Hohenberg equatio
@25#. In the appendix we shall consider roll solutions of Eq.~3.17!, and discuss their stability with respect to long wavelen
disturbances as well as with respect to amplitude instabilities.

It is interesting to notice that the order parameter equation turns into a gradient system if the coefficientsBn; i j lm are totally
symmetric with respect to the indicesi , j ,l , andm. In that case the following Ljapunov potential exists:
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V4@C#52 1
2 E dx@~«2D̃ !C~x,t !#22 1

4 (
n; i j lm

Bn; i j lmE dx@D̃ iC~x,t !#@D̃ jC~x,t !#Dn$@D̃ lC~x,t !#@D̃mC~x,t !#%,

~3.19!
x
er

try.
in
xis
a-

he

ing
ns,
of
from which the evolution equation~3.17! is obtained by the
functional derivative

Ċ52
dV4@C#

dC
. ~3.20!

Furthermore, if one is content with the lowest order appro
mation« (3/2), neglecting contributions of terms of the ord
of

D̃ iC~x,t !, i .0 ~3.21!

to the cubic part, the termsBn;0000 are totally symmetric and
a Ljapunov potential having the form

V4@C#52 1
2 E dx@~«2D̃ !C~x,t !#2

2 1
4 (

n
Bn;0000E dx C2~x,t !DnC2~x,t !

~3.22!
e

e

he
e
o

i-

exists.

B. Isotropic systems lacking reflectional symmetry

Now we release the assumption of reflectional symme
As an example we mention the convective instability
large-aspect-ratio systems rotating around a vertical a
@27–29#. This externally applied rotation conserves rot
tional invariance but breaks reflection symmetry.

Again we perform a Taylor expansion with respect to t
variables k i

2 at kc
2 and (k21k3)2, e3•@k23k3#, and

e3•@k13(k21k3)# at zero. We introduce the abbreviation

a i5kc
22k i

2 . ~3.23!

Furthermore, we note that even powers of terms involv
the cross products are invariants with respect to reflectio
and can therefore be expressed in terms of powers
k1

2 , k2
2 , and (k11k2)2. Therefore, the expansion reads
G35 (
n; i j lm

Bn; i j lm~21!na ia1
j a2

l a3
m~k21k3!2n1 (

n; i j lm
Cn; i j lm~21!na ia1

j a2
l a3

m~k21k3!2nez•~k23k3!

1 (
n; i j lm

Dn; i j lm~21!na ia1
j a2

l a3
m~k21k3!2nez•~k13@k21k3# !. ~3.24!

Transforming back to real space yields the desired order parameter equation

Ċ~x,t !5@«2D̃2#C~x,t !1 (
n; i j lm

Bn; i j lmD̃ i$D̃ jC~x,t !Dn@D̃ lC~x,t !D̃mC~x,t !#%

1 (
n; i j lm

Cn; i j lmD̃ i$D̃ jC~x,t !Dnez•@“D̃ lC~x,t !3“D̃mC~x,t !#%

1 (
n; i j lm

Dn; i j lmD̃ i$ez•†“D̃ jC~x,t !3“Dn@D̃ lC~x,t !D̃mC~x,t !#‡%. ~3.25!
ke
uct

tic
We mention that equations of the present type have b
applied to describe pattern formation in rotating Be´nard con-
vection where complex spatio-temporal patterns arise du
the Küppers-Lortz instability@30–32#.

C. Quadratic terms

Now we wish to include also quadratic terms into t
evolution equation~2.9!. Let us again first consider the cas
of a reflectionally invariant system. Then the dependence
the cross productez•@k23k3# drops out, and we can perform
an expansion ink i

2 at kc
2 .
en

to

n

G2~k,k1 ,k2!5(
i j l

Ci j l a
ia1

j a2
l . ~3.26!

For systems lacking reflectional symmetry, we have to ta
into account a term proportional to the cross prod
ez•@k23k3#:

G2~k,k1 ,k2!5(
i j l

Di j l a
ia1

j a2
l ez•@k13k2#. ~3.27!

Transforming back to real space yields the two quadra
terms
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(
i j l

Ci j l D̃
i@D̃ jC~x,t !D̃ lC~x,t !#,

~3.28!

(
i j l

Di j l D̃
iez•@“D̃ jC~x,t !3“D̃ lC~x,t !#.

It has been demonstrated that the inclusion of quadr
terms leads to the formation of hexagonal patterns clos
onset of the instability@33,34#.

D. Order parameters of pseudoscalar type

It is well established that the convective instability in sy
tems with low Prandtl numbers is not governed only by
order parameter which belongs to the convective roll str
ture. As first noticed by Siggia and Zippelius@35#, there are
effects of large scale horizontal drift motions due to the f
e

ob

s
t
ll

ri-
of

tio
pa
s
th
ly
nl
tia

b
h
rd
p
s

th
th
ec
ic
to

-
n
-

t

that large scale vortical motions are only weakly damped
secondary spatially slowly varying field arises which has
be considered as a further order parameter. This situation
been modeled by introducing the stream function of the v
tical velocity field as a second order parameter field. Ho
ever, the stream function is pseudoscalar. Therefore, we s
discuss a pattern forming system for which an order para
eter of pseudoscalar type has to be taken into account.
observation will lead us to generalizations of the above fo
of the model of Manneville@36,37#.

In addition to an order parameter field arising due to
instability at a finite wave vectorkc , we consider a second
ary order parameter fieldF(x,t) which is pseudoscalar. Fur
thermore, we assume that the two fields are coupled by q
dratic terms. For this case, the set of order param
equations reads
Ċ~x,t !5l~D̃!C~x,t !1 (
n; i j lm

Bn; i j lmD̃ i$D̃ jC~x,t !Dn@D̃ lC~x,t !D̃mC~x,t !#%1(
i ; j l

Ci ; j l D̃
ie3•†“D̃ jC~x,t !3“D lF~x,t !],

~3.29!

t~D!Ḟ~x,t !5g~D!F~x,t !1 (
n; i j lm

Di ; j l D̃
ie3•@“D̃ jC~x,t !3“D̃ lC~x,t !#. ~3.30!
s

the

the
Hereg(2k2)/t(2k2) denotes the linear growth rates of th
normal modes of the pseudoscalar fieldF(x,t). We mention
that quadratic terms involving the fieldsF andC as well as
F andF could also arise in the equation forF. The struc-
ture of the corresponding coupling coefficients can be
tained by similar reasonings, so that we do not need
specify them here.

The class of systems described by the present type
order parameter equations have become highly importan
the observation that they are able to describe the so-ca
spiral turbulence@38#, which has been investigated expe
mentally@39#, and recently in direct numerical simulations
the three dimensional hydrodynamic equations@40#.

IV. CONCLUSION

In the present paper we have given a detailed deriva
of order parameter equations describing the evolution of
terns in nonequilibrium systems. Starting from a general
of equations of motion, we argued that the reduction of
many degrees of freedom to a few ‘‘relevant’’ ones, name
the order parameters, close to an instability leads to a no
cal order parameter equation in form of an integrodifferen
equation. We have shown that the nonlocal terms may
approximated by a suitable local gradient expansion. T
expansion takes into account that close to threshold the o
parameter field is excited only in a finite band around a ty
cal critical wave number. This allows us to perform a sy
tematic expansion of the nonlocal terms in powers of
bandwidth. A secondary expansion takes into account
nonlinear interaction between plane waves of different dir
tions.
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APPENDIX: STABILITY BOUNDARIES OF ROLLS

Here we want to investigate the stability of roll solution
for the order parameter equation~3.17!. In the lowest order
of «, a solution of Eq.~3.17! having the form of parallel rolls
reads

C0~x!5A0~k!sin~kx!, ~A1!

with

A0
2~k!524

«2a2

c0~k!
, ~A2!

wherea is given in Eq.~3.23!, and the abbreviation

c0~k!5 (
i j lmn

Bn; i j lma i 1 j 1 l 1m@~24k2!n12dn0# ~A3!

with the Kronecker symbold i j is used.

1. Phase instabilities

To obtain the phase instability boundaries that confine
regions in thek-« plane, where Eq.~A1! is stable with re-
spect to disturbances with long wavelength we invoke
method of phase equations@41,4#. We insert

C~x,t !5S A0~k!

2
1a~x,t ! Dei „kx1F~x,t !…, ~A4!
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with the spatially slowly varying amplitudea(x,t) and phase
F(x,t) into Eq. ~3.17!. After linearization and neglecting
higher spatial derivatives we obtain equations of the form

ȧ5 f ~a,]xF!,
~A5!

Ḟ5g~]xxF,]yyF,a,]xa!,

where f and g are linear functions ofF and a and their
derivatives. The assumption that the amplitude is ensla
by the phase allows an adiabatic elimination of the first
solving
d
y

f ~a,]xF!50 ~A6!

for a, which yields the instantaneous relationa5a(]xF).
Inserting this into the equation of motion for the phase~A5!
leads to the phase equation

Ḟ~x,t !5@D i]xx1D']yy#F~x,t !. ~A7!

The phase diffusion coefficients can be computed explic
from Eq. ~3.17!. They read
D i54k2aS c1~k!

c0~k!
2

2a

«2a2D 16k2222
1

c0~k! (
i j lmn

Bn; i j lma i 1 j 1 l 1m22

3H F1

2
~24k2!n11

„i ~ i 21!2 j ~ j 21!1 l ~ l 21!1m~m21!12i ~ j 1 l 1m!…2a~24k2!n
„j 2 l 2m2 i 22n~2i 1 l 1m!…

12a2~24k2!n21n~2n21!24k2dn0„i ~ i 21!1 j ~ j 21!12i ~ j 1 l 1m!…12adn0~ i 1 j !G@«2a2#22ak2@2dn0~3i 1 j !

1~24k2!n~3i 2 j 1 l 1m!14na~24k2!n21#Fc1~k!

c0~k!
~«2a2!22a G J ~A8!

and

D'522a2
«2a2

c0~k! (
i j lmn

Bn; i j lma i 1 j 1 l 1m21@~24k2!n~ i 2 j 1 l 1m!12na~24k2!n2112dn0~ i 1 j !#, ~A9!

with

c1~k!5
dc0~k!

dk2
.

Rolls are unstable if at least one diffusion coefficient becomes negative. Therefore,

D i50 ~A10!

denotes the longitudinal orEckhausinstability @42,43#, and

D'50 ~A11!

the vertical or zigzag instability@43#.
Assuming again that the width of the excited band of the order parameter in Fourier space depends on«, i.e.,

a}«1/2, ~A12!

simplifies expressions~A11! and ~A10!. If we solve for« we obtain up to the appropriate order the stability boundaries

« i5S 11
4k2

3k221
D a21O~a3!, «'522

a

b
a1S 2ab1

b2
2

2a1

b D a21O~a3!, ~A13!

~A13!
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where we used the abbreviations

a[(
n

Bn;0000„~24k2!n12dn0…, ~A14!

a1[ (
i j lmn

Bn; i j lmd i 1 j 1 l 1m,1„~24k2!n12dn0…,

b[ (
i j lmn

Bn; i j lm@~24k2!n~ i 2 j 1 l 1m!12dn0~ i 1 j !#d i 1 j 1 l 1m,1 ,

b1[ (
i j lmn

Bn; i j lm@~24k2!n~ i 2 j 1 l 1m!12dn0~ i 1 j !#@d i 1 j 1 l 1m,212n~24k2!n21d i 1 j 1 l 1m,1#.
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From Eq.~A13! it is obvious that in lowest self consisten
order the longitudinal instability boundary cannot depend
the nonlinear coefficients of the gradient expansion~3.17!.
The Eckhaus instability near threshold is universal and in
pendent from the special form of the kernelG3. A quite
different situation occurs for the zigzag instability. Here
coefficients with respect to the indexn as well as the two
lowest order fulfilling the conditioni 1 j 1 l 1m<2 are im-
portant, and may influence the shape of the boundary.

2. Amplitude instabilities

In contrast to the long wavelength phase instabilities,
amplitude instabilities usually have a wave vector com
rable or close to the critical one, but a different directio
Again we examine the stability of parallel rolls@Eq. ~A1!#,
now making the ansatz

C~x,t !5C0~x!1ae~ ik1x1st !, ~A15!

with arbitrary orientatedk1 for Eq. ~3.17!. Linearization with
respect toa gives the growth rate

s5«2a1
22~«2a2!

c~k,k8!

c0~k!
, ~A16!

with

a1512k1
2 , k5~k,0! ~A17!

and

c~k,k8!5 (
i j lmn

Bn; i j lm$~a1
i 1 la j 1m1a1

i 1ma j 1 l !

3„@2~k1k8!2#n1@2~k2k8!2#n
…

12dn0a1
i 1 ja l 1m%. ~A18!
n

-

l

e
-
.

The conditions50 yields the stability boundaries with re
spect to the amplitude instability. To obtain the most dang
ous mode, the length and direction ofk1 must be chosen so
that s has a maximum. The terms in the sum overn in Eq.
~A18! with n50 and 1 have no angular dependence a
waves with arbitrary directions become unstable simu
neously. This is also the case for the Swift-Hohenberg eq
tion (n50). The term forn52 is the first one that leads t
an angular dependent growth rate~A16! and must be in-
cluded to adjust the stability boundary. It is easily shown t
this expression can produce a maximal growth rate at
angle of 90° betweenk andk1 , leading to an instability that
sets in perpendicularly toC0 , which is nothing else than the
well-known cross-roll~CR! instability @43#.

Again we may expands in powers of« @or, according to
Eq. ~A12!, of a2]. Up to order« we obtain

FIG. 3. Stability range of convection rolls in the Rayleig
Bénard problem calculated from Eq.~3.17!. The coefficients of Eq.
~3.17! were computed for the case of free vertical boundary con
tions and infinite Prandtl number. The Rayleigh number is deno
by R. Convection sets in above the bold line. Rolls with a wa
vectork are stable in the shaded area and are bounded from the
hand side by the zigzag instability~solid!, and from the right hand
side by the cross-roll instability~dashed!. The bold dashed line
denoteskc , which varies slightly withR.
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sCR5«2a8222~«2a2!

3

(
n

Bn;0000„@2~k1k8!2#n1@2~k2k8!2#n1dn0…

(nBn;0000„~24k2!n12dn0…
.

~A19!

The boundary of the cross-roll instability is influenced on
by the coefficients belonging to the expansion with respec
Dn in Eq. ~3.17!.

In summary we see that if the expansion with respec
the indexn converges rapidly, model equations obtained
low order truncations of the nonlinear interaction terms
reasonable approximations in the sense that they yield
verging expressions for the stability boundaries of the
solutions.

3. Busse balloon

As an example we computed the phase and amplit
instabilities of parallel rolls as the first instability i
Rayleigh-Bénard convection from Eq.~3.17!. First order
terms with respect to the bandwidthD̃ as well as second
order terms of the angular couplingDn have been taken into
ch

ce

ve
r

. B

hy
to

o
y
e
n-
ll

e

account. For the case of free boundaries in vertical direc
the linear problem~2.3! may be solved analytically. The co
efficientsBn; i j lm of Eq. ~3.17! are obtained from Eq.~3.12!,
which takes the following form:

G3~k2,k1
2 ,k2

2 ,k3
2 ,ks

2!52
Rc

2

256l~2!~ks
2!p2~p21k2

2!2

3F ks
22k223k1

2

~p21k1
2!2

12
k3

22k2
2

~4p21ks
2!2G

3@3k2
21k3

22ks
2#, ~A20!

with ks[k21k3 and l (2) being the eigenvalue of the firs
stable mode having thez dependence sin(2pz).

Figure 3 shows the results. Note that compared to
diagrams found from the Swift-Hohenberg equation@25# the
zigzag instability is inclined to the left, and cross-roll an
Eckhaus instabilities are changed. Rolls are bounded
large wave vectors by the cross-roll instability. The diagra
is in excellent agreement with that computed directly fro
the hydrodynamic equations@44#.
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